介電常數(shù)介質(zhì)損耗測(cè)試儀ASTM D150美標(biāo)翻譯
ASTM D150-11
實(shí)心電絕緣材料的交流損耗特性和
電容率(介電常數(shù))的標(biāo)準(zhǔn)試驗(yàn)方法1
本標(biāo)準(zhǔn)是以固定代號(hào)D150發(fā)布的。其后的數(shù)字表示原文本正式通過的年號(hào);在有修訂的情況下,為上一次的修訂年號(hào);圓括號(hào)中數(shù)字為上一次重新確認(rèn)的年號(hào)。上標(biāo)符號(hào)(ε)表示對(duì)上次修改或重新確定的版本有編輯上的修改。
本標(biāo)準(zhǔn)經(jīng)批準(zhǔn)用于國(guó)防部所有機(jī)構(gòu)。
介電常數(shù)介質(zhì)損耗測(cè)試儀1.范圍
1.1 本試驗(yàn)方法包含當(dāng)所用標(biāo)準(zhǔn)為集成阻抗時(shí),實(shí)心電絕緣材料樣本的相對(duì)電容率,耗散因子,損耗指數(shù),功率因子,相位角和損耗角的測(cè)定。列出的頻率范圍從小于1Hz到幾百兆赫茲。
注1:在普遍的用法,“相對(duì)”一詞經(jīng)常是指下降值。
1.2 這些試驗(yàn)方法提供了各種電極,裝置和測(cè)量技術(shù)的通用信息。讀者如對(duì)某一特定材料相關(guān)的議題感興趣的話,必須查閱ASTM標(biāo)準(zhǔn)或直接適用于被測(cè)試材料的其它文件。2,3
1.3 本標(biāo)準(zhǔn)并沒有*列舉所有的安全聲明,如果有必要,根據(jù)實(shí)際使用情況進(jìn)行斟酌。使用本規(guī)范前,使用者有責(zé)任制定符合安全和健康要求的條例和規(guī)范,并明確該規(guī)范的使用范圍。特殊危險(xiǎn)說明見7.2.6.1和10.2.1。
1 本規(guī)范歸屬于電學(xué)和電子絕緣材料ASTM D09委員會(huì)管轄,并由電學(xué)試驗(yàn)D09.12附屬委員分會(huì)直接管理。
當(dāng)前版本核準(zhǔn)于2011年8月1日。2011年8月發(fā)行。原版本在1922年批準(zhǔn)。前一版本于2004年批準(zhǔn),即為 D150-98R04。DOI:10.1520/D0150-11。
2 R. Bartnikas, 第2章, “交流電損耗和電容率測(cè)量,” 工程電介質(zhì), Vol. IIB, 實(shí)心絕緣材料的電學(xué)性能, 測(cè)量技術(shù), R. Bartnikas, Editor, STP 926,ASTM, Philadelphia, 1987.
3 R. Bartnikas, 第1章, “固體電介質(zhì)損耗,” 工程電介質(zhì),Vol IIA, 實(shí)心絕緣材料的電學(xué)性能: 分子結(jié)構(gòu)和電學(xué)行為, R. Bartnikas and R. M. Eichorn, Editors, STP 783, ASTM, Philadelphia, 1983.
介電常數(shù)介質(zhì)損耗測(cè)試儀2.引用文件
2.1 ASTM標(biāo)準(zhǔn):4
D374 固體電絕緣材料厚度的標(biāo)準(zhǔn)試驗(yàn)方法
D618 試驗(yàn)用塑料調(diào)節(jié)規(guī)程
D1082 云母耗散因子和電容率(介電常數(shù))試驗(yàn)方法
D1531 用液體位移法測(cè)定相對(duì)電容率(介電常數(shù))與耗散因子的試驗(yàn)方法
D1711 電絕緣相關(guān)術(shù)語
D5032 用飽和甘油溶液方式維持恒定相對(duì)濕度的規(guī)程
E104 用水溶液保持相對(duì)恒定濕度的標(biāo)準(zhǔn)實(shí)施規(guī)程
E197 室溫之上和之下試驗(yàn)用罩殼和服役元件規(guī)程(1981年取消)5
介電常數(shù)介質(zhì)損耗測(cè)試儀3.術(shù)語
3.1 定義:
3.1.1 這些試驗(yàn)方法所用術(shù)語定義以及電絕緣材料相關(guān)術(shù)語定義見術(shù)語標(biāo)準(zhǔn)D1711。
3.2 本標(biāo)準(zhǔn)術(shù)語定義:
3.2.1 電容,C,名詞——當(dāng)導(dǎo)體之間存在電勢(shì)差時(shí),導(dǎo)體和電介質(zhì)系統(tǒng)允許儲(chǔ)存電分離電荷的性能。
3.2.1.1 討論——電容是指電流電量 q與電位差V之間的比值。電容值總是正值。當(dāng)電量采用庫(kù)倫為單位,電位采用伏特為單位時(shí),電容單位為法拉,即:
C=q/V (1)
3.2.2 耗散因子(D),(損耗角正切),(tanδ),名詞——是指損耗指數(shù)(K'')與相對(duì)電容率(K')之間的比值,它還等于其損耗角(δ)的正切值或者其相位角(θ)的余切值(見圖1和圖2)。
D=K''/K' (2)
4 相關(guān)ASTM標(biāo)準(zhǔn),可瀏覽ASTM,www.astm。。org或與ASTM客服service@astm.org。ASTM標(biāo)準(zhǔn)手冊(cè)卷次信息,可參見ASTM標(biāo)準(zhǔn)文件匯總。
5 該歷史標(biāo)準(zhǔn)的zui后批準(zhǔn)版本參考www.astm。。org。
3.2.2.1 討論——a:
D=tanδ=cotθ=Xp/Rp=G/ωCp=1/ωCpRp (3)
式中:
G=等效交流電導(dǎo),
Xp=并聯(lián)電抗,
Rp=等效交流并聯(lián)電阻,
Cp=并聯(lián)電容,
ω=2πf(假設(shè)為正弦波形狀)
耗散因子的倒數(shù)為品質(zhì)因子Q,有時(shí)成為儲(chǔ)能因子。對(duì)于串聯(lián)和并聯(lián)模型,電容器耗散因子D都是相同的,按如下表示為:
D=ωRsCs=1/ωRpCp (4)
串聯(lián)和并聯(lián)部分之間的關(guān)系滿足以下要求:
Cp=Cs/(1+D2) (5)
Rp/Rs=(1+D2)/D2=1+(1/D2)=1+Q2 (6)
圖1 并聯(lián)電路的矢量圖
圖2 串聯(lián)電路的矢量圖
3.2.2.2 討論——b:串聯(lián)模型——對(duì)于某種具有電介質(zhì)損耗(圖3)的絕緣材料,其并聯(lián)模型通常是適當(dāng)?shù)哪P?,其總是能和偶爾要求模擬在單頻率下電容Cs與電阻Rs串聯(lián)(圖4和圖2)的某個(gè)電容器。
圖3 并聯(lián)電路
圖4 串聯(lián)電路
3.2.3 損耗角(缺相角),(δ),名詞——該角度的正切值為耗散因子或反正切值K''/K'或者其余切值為相位角。
3.2.3.1 討論——相位角和損耗角的關(guān)系見圖1和圖2所示。損耗角有時(shí)成為缺相角。
3.2.4 損耗指數(shù),K''(ε''),名詞——相對(duì)復(fù)數(shù)電容率虛數(shù)部分的大??;其等于相對(duì)電容率和耗散因子的乘積。
3.2.4.1 討論——a——它可以表示為:
K''=K' D=功率損耗/(E2×f×體積×常數(shù)) (7)
當(dāng)功率損耗采用瓦特為單位,施加電壓采用伏特/厘米為單位,頻率采用赫茲為單位,體積(是指施加了電壓的體積)采用立方厘米為單位,此時(shí)的常數(shù)值為5.556×10-13。
3.2.4.2 討論——b——損耗指數(shù)是上協(xié)定使用的術(shù)語。在美國(guó),K''以前成為損耗因子。
3.2.5 相位角,θ,名詞——該角度的余切值為耗散因子,反余切值K''/K',同時(shí)也是施加到某一電介質(zhì)的正弦交流電壓與其形成的具有相同頻率的電流分量之間的相位角度差值。
3.2.5.1 討論——相位角和損耗角之間的關(guān)系見圖1和圖2所示。損耗角有時(shí)也
稱為缺相角。
3.2.6 功率因子,PF,名詞——某一材料消耗的功率W(單位為瓦特)與有效正弦電壓V和電流I之間乘積(單位為伏特-安)的比值。
3.2.6.1 討論——功率因子可以采用相位角θ的余弦值(或損耗角的正弦值δ)來表示:
(8)
當(dāng)耗散因子小于0.1時(shí),功率因子與耗散因子之間的差值小于0.5%??蓮南率秸业剿鼈兊臏?zhǔn)確關(guān)系:
(9)
3.2.7 相對(duì)電容率(相對(duì)介電常數(shù))(SIC)K'(εr),名詞——相對(duì)復(fù)數(shù)電容率的實(shí)數(shù)部分。它也是采用某一材料作為電介質(zhì)的某一給定形狀電極等效并聯(lián)電容Cp與采用真空(或空氣,適用于多數(shù)實(shí)際用途)作為電介質(zhì)的相同形狀電極電容Cv之間的比值。
K'=Cp/Cv (10)
3.2.7.1討論——a——在普遍的用法,“相對(duì)”一詞經(jīng)常是指下降值。
3.2.7.2 討論——b——從經(jīng)驗(yàn)來看,真空在各處必須采用材料來替代,因?yàn)槠淠茱@著改變電容。電介質(zhì)等效電路假設(shè)包含一個(gè)電容Cp,該電容與電導(dǎo)并聯(lián)。
3.2.7.3 討論——c——Cx視為圖3所示的等效并聯(lián)電容Cp。
3.2.7.4 討論——d——當(dāng)耗散因子為0.1時(shí),串聯(lián)電容大于并聯(lián)電容,但是兩者差值小于1%,而當(dāng)耗散因子為0.03時(shí),兩者差值小于0.1%。如果測(cè)量電路獲得串聯(lián)部分的結(jié)果,在計(jì)算修正值和電容率之前,并聯(lián)電容必須由公式5計(jì)算得出。
3.2.7.5 討論——e——干燥空氣在23℃和101.3kPa標(biāo)準(zhǔn)壓力下的電容率為1.000536(1)。6其從整體的背離值K'-1與溫度成反比,同時(shí)直接與大氣壓力成正比。當(dāng)空間在23℃下達(dá)到水蒸氣飽和時(shí),電容率增加至為0.00025(2,3),同時(shí)隨著溫度(單位為℃)從10到27℃近似發(fā)生線性變化。對(duì)于局部飽和,增加值與相對(duì)濕度成正比。
介電常數(shù)介質(zhì)損耗測(cè)試儀4.試驗(yàn)方法摘要
4.1 電容和交流電阻測(cè)量在一個(gè)樣本上進(jìn)行。相對(duì)電容率等于樣本電容除以(具有相同電極形狀)真空電容計(jì)算值,同時(shí)很大程度上取決于誤差源分辨率。耗散因子通常與樣本幾何形狀無關(guān),同時(shí)也可以依據(jù)測(cè)量值計(jì)算得出。
4.2 本方法提供了(1)電極,裝置和測(cè)量方法選擇指南;和(2)如何避免或修正電容誤差的指導(dǎo)。
4.2.1 一般的測(cè)量考慮:
邊緣現(xiàn)象和雜散電容 受保護(hù)電極
樣本幾何形狀 真空電容計(jì)算
邊緣,接地和間隙修正
4.2.2 電極系統(tǒng)—接觸式電極
電極材料 金屬箔片
導(dǎo)電涂料 燒銀
噴鍍金屬 蒸發(fā)金屬
液態(tài)金屬 剛性金屬
水
4.2.3 電極系統(tǒng)—非接觸式電極
固定電極 測(cè)微計(jì)電極
液體置換法
6 括號(hào)里的粗體字參閱這些試驗(yàn)方法附屬的參考文獻(xiàn)清單。
4.2.4 電容和交流損耗測(cè)量裝置和方法選擇
頻率 直接和替代方法
兩終端測(cè)量 三終端測(cè)量
液體置換法 精度考慮
介電常數(shù)介質(zhì)損耗測(cè)試儀5.意義和用途
5.1 電容率——絕緣材料通常以兩種不同方式來使用,即(1)用于固定電學(xué)網(wǎng)絡(luò)部件,同時(shí)讓其彼此以及與地面絕緣;(2)用于起到某一電容器的電介質(zhì)作用。在*種應(yīng)用中,通常要求固定的電容盡可能小,同時(shí)具有可接受且一致的機(jī)械,化學(xué)和耐熱性能。因此要求電容率具有一個(gè)低值。在第二種應(yīng)用中,要求電容率具有一個(gè)高值,以使得電容器能夠在外型上能盡可能小。有時(shí)使用電容率的中間值來評(píng)估在導(dǎo)體邊緣或末端的應(yīng)力,以將交流電暈降至zui小。影響電容率的因子討論見附錄X3。
5.2 交流損耗——對(duì)于這兩種場(chǎng)合(作為電學(xué)絕緣材料和作為電容器電介質(zhì)),交流損耗通常必須是比較小的,以減小材料的加熱,同時(shí)將其對(duì)網(wǎng)絡(luò)剩余部分的影響降至zui小。在高頻率應(yīng)用場(chǎng)合,特別要求損耗指數(shù)具有一個(gè)低值,因?yàn)閷?duì)于某一給定的損耗指數(shù),電介質(zhì)損耗直接隨著頻率而增大。在某些電介質(zhì)結(jié)構(gòu)中,例如試驗(yàn)用終止襯套和電纜所用的電介質(zhì),通常電導(dǎo)增加可獲得損耗增大,這有時(shí)引入其來控制電壓梯度。在比較具有近似相同電容率的材料時(shí)或者在材料電容率基本保持恒定的條件下使用任何材料時(shí),這可能有助于考慮耗散因子,功率因子,相位角或損耗角。影響交流損耗的因子討論見附錄X3。
5.4 相關(guān)性——當(dāng)獲得適當(dāng)?shù)南嚓P(guān)性數(shù)據(jù)時(shí),耗散因子或功率因子有助于顯示某一材料在其它方面的特征,例如電介質(zhì)擊穿,濕分含量,固化程度和任何原因?qū)е碌钠茐?。然而,由于熱老化?dǎo)致的破壞將不會(huì)影響耗散因子,除非材料隨后暴露在濕分中。當(dāng)耗散因子的初始值非常重要的,耗散因子隨著老化發(fā)生的變化通常是及其顯著的。
介電常數(shù)介質(zhì)損耗測(cè)試儀6.一般測(cè)量考慮
6.1 邊緣現(xiàn)象和雜散電容——這些試驗(yàn)方法是以電極之間的樣本電容測(cè)量,以及相同電極系統(tǒng)的真空電容(或空氣電容,適用于多數(shù)實(shí)際用途)測(cè)量或計(jì)算為基礎(chǔ)。對(duì)于無保護(hù)的兩電極測(cè)量,要求采用兩個(gè)測(cè)定值來計(jì)算電容率,而當(dāng)存在不期望的邊緣現(xiàn)象和雜散電容時(shí)(它們將包含在測(cè)量讀數(shù)中),變得相當(dāng)復(fù)雜。對(duì)于測(cè)量用所放置樣本之間的兩個(gè)無保護(hù)平行板電極場(chǎng)合,邊緣現(xiàn)象和雜散電容見圖5和圖6所述。除了要求的直接電極之間電容Cv之外,在終端a-a'看到的系統(tǒng)包括以下內(nèi)容:
圖5 雜散電容,無保護(hù)電極
圖6 無保護(hù)電極之間的通量線
Ce=邊緣現(xiàn)象或邊緣電容,
Cg=每個(gè)電極外表面的接地電容,
CL=連接導(dǎo)線之間的電容,
CLg=接地導(dǎo)線的電容,
CLc=導(dǎo)線和電極之間的電容。
只有要求的電容Cv是與外部環(huán)境無關(guān),所有其它電容都在一定程度上取決于其它目標(biāo)的接近度。有必要在兩個(gè)可能的測(cè)量條件之間進(jìn)行區(qū)分,以確定不期望電容的影響。當(dāng)一個(gè)測(cè)量電極接地時(shí),情況經(jīng)常是這樣的,所述的所有電容與要求的Cv并聯(lián),除了接地電極的接地電容及其導(dǎo)線之外。如果Cv放入一個(gè)試驗(yàn)箱之內(nèi),同時(shí)試驗(yàn)箱墻壁具有保護(hù)定位,連接到試驗(yàn)箱的導(dǎo)線也受到保護(hù),則接地電容可以不再出現(xiàn),此時(shí)在a-a'處的電容看起來只包括Cv和Ce。對(duì)于某一給定電極布置,當(dāng)電介質(zhì)為空氣時(shí),可以計(jì)算得出邊緣電容Ce,同時(shí)該計(jì)算值具有適當(dāng)?shù)木?。?dāng)某一樣本放置在電極之間時(shí),邊緣電容值可能發(fā)生變化,此時(shí)要求使用一個(gè)邊緣電容修正值,該修正值可見表1給出的信息。在許多條件下,已經(jīng)獲得了經(jīng)驗(yàn)性修正值,這些修正值見表1所示(表1適用于薄電極場(chǎng)合,例如箔片)。在日常工作中,當(dāng)*精度不作要求時(shí),很方便使用無屏蔽的兩電極系統(tǒng),同時(shí)進(jìn)行適當(dāng)?shù)男拚R驗(yàn)槊娣e(同時(shí)因此Cv)以直徑平方級(jí)增大時(shí),然而周長(zhǎng)(同時(shí)因此Ce)隨著直徑線性增大時(shí),由于忽略邊緣修正導(dǎo)致的電容率百分比誤差隨著樣本直徑增大而減小。然而,為進(jìn)行得測(cè)量,有必要使用受保護(hù)的電極。
6.2 受保護(hù)電極——在受保護(hù)電極邊緣的邊緣現(xiàn)象和雜散電容實(shí)際上可通過增加一個(gè)按圖7和圖8所示的保護(hù)電極來消除。如果試驗(yàn)樣本和保護(hù)電極越過受保護(hù)電極的延伸距離至少為2倍的樣本厚度,同時(shí)保護(hù)間隙非常小,受保護(hù)區(qū)域的電場(chǎng)分布將與當(dāng)真空為電介質(zhì)時(shí)存在的分布相同,同時(shí)這兩個(gè)靜電容的比值為電容率。而且,激活電極之間的電場(chǎng)可以進(jìn)行定義,真空電容也可以計(jì)算得出,其精度只受到尺寸已知的精度的限制。由于這個(gè)原因,受保護(hù)電極(三終端)方法將用于作為仲裁方法,除非另有協(xié)定。圖8顯示了一種完整受保護(hù)和屏蔽電極系統(tǒng)的圖解。盡管保護(hù)通常被接地,所示布置允許接地或測(cè)量電極,或者沒有電極能容納被使用的特殊三終端測(cè)量系統(tǒng)。如果保護(hù)接地,或者連接到測(cè)量電路中的一個(gè)保護(hù)終端上,測(cè)量的電容為兩個(gè)測(cè)量電極之間的靜電容,無保護(hù)電極和導(dǎo)線的接地電容與要求的靜電容進(jìn)行并聯(lián)連接。為消除該誤差源,采用一個(gè)屏障連接到保護(hù)上來包圍無保護(hù)電極,如圖8所示。除了那些總是不方便或不實(shí)際的,且限制頻率小于幾兆赫茲的保護(hù)方法之外,已經(jīng)設(shè)計(jì)出使用特殊電池和程序的技術(shù),采用兩終端測(cè)量,精度相當(dāng)于受保護(hù)測(cè)量所獲得的精度。此處所述方法包括屏蔽測(cè)微計(jì)電極(7.3.2)和液體置換方法(7.3.3)。
6.3 樣本幾何形狀——為測(cè)定某一材料的電容率和耗散因子,薄板樣本。圓柱形樣本也可以使用,但是通常具有較低的精度。電容率zui大不確定度來源是樣本尺寸測(cè)定,特別是樣本厚度測(cè)定。因此,厚度應(yīng)足夠大以允許其測(cè)量值具有要求的精度。選擇的厚度將取決于樣本生產(chǎn)的方法和可能的點(diǎn)到點(diǎn)變化。對(duì)于1%精度,厚度為1.5mm(0.06in)通常是足夠的,盡管對(duì)于較大的精度,要求使用一個(gè)較厚的樣本。當(dāng)使用箔片或剛性電極時(shí),另一誤差源是電極和樣本之間的不可以避免的間隙。對(duì)于薄樣本,電容率誤差可大至25%。類似誤差在耗散因子中也會(huì)產(chǎn)生,盡管當(dāng)箔片電極涂覆了一種油脂時(shí),兩種誤差不可能具有相同的大小。為在薄樣本上獲得zui的測(cè)量值,使用液體置換方法(6.3.3)。該方法降低了或*消除了樣本的電極需求。厚度必須進(jìn)行測(cè)定,測(cè)量時(shí),在電學(xué)測(cè)量所用的樣本區(qū)域上進(jìn)行系統(tǒng)性地分布測(cè)量,厚度測(cè)量值均勻性應(yīng)在±1%的平均厚度之內(nèi)。如果樣本整個(gè)區(qū)域?qū)⒈浑姌O覆蓋,同時(shí)如果已知材料密度,可通過稱量法來測(cè)定平均厚度。樣本直徑選擇應(yīng)使得能提供一個(gè)具有要求精度的樣本電容測(cè)量值。采用受到良好保護(hù)和遮蔽的裝置,將沒有困難測(cè)量電容為10pF,分辨率為1/1000的樣本。如果將要測(cè)試一個(gè)低電容率的厚樣本,則可能將需要直徑大于等于100mm,以獲得要求的電容精度。在測(cè)量較小值的耗散因子時(shí),關(guān)鍵點(diǎn)是電極的串聯(lián)電阻應(yīng)不會(huì)有助于產(chǎn)生相當(dāng)大的擴(kuò)散因子,同時(shí)測(cè)量網(wǎng)絡(luò)沒有大電容的電阻應(yīng)與樣本進(jìn)行并聯(lián)連接。這些觀點(diǎn)的*點(diǎn)是偏好厚樣本;第二點(diǎn)建議大區(qū)域的薄樣本。測(cè)微計(jì)電極方法(6.3.2)可用于消除串聯(lián)電阻的影響。使用一個(gè)受保護(hù)樣本固定架(圖8)來將外部電容降至zui低。
6.4 真空電容計(jì)算——可以zui計(jì)算電容所用的實(shí)際形狀為平坦平行板和同軸圓筒,電容計(jì)算用公式見表1所示。這些公式以測(cè)量電極之間的均勻電場(chǎng),同時(shí)在邊緣沒有邊緣現(xiàn)象為基礎(chǔ)。以此為基礎(chǔ)計(jì)算的電容也就是熟知的電極之間靜電容。
表1 真空電容和邊緣修正值的計(jì)算(見8.5)
注1:所用符號(hào)標(biāo)識(shí)見表2。
電極類型 | 真空內(nèi)電極之間靜電容,pF | 在某一邊緣的雜散電場(chǎng)修正值,pF |
帶防護(hù)環(huán)的圓盤形電極:
不帶防護(hù)環(huán)的圓盤形電極: 電極直徑=樣本直徑:
|
其中
| |
小于樣本的等效電極:
|
其中:=樣本允許發(fā)生鈍態(tài)的近似值,同時(shí)a<<t。 | |
不等效電極:
|
其中:=樣本允許發(fā)生鈍態(tài)的近似值,同時(shí)a<<t。 | |
帶保護(hù)環(huán)的圓柱形電極:
| ||
不帶保護(hù)環(huán)的圓柱形電極:
|
其中:=樣本允許發(fā)生鈍態(tài)的近似值。 |
A 保護(hù)間隙的修正值見附錄X2。
6.5 邊緣,接地和間隙修正——表1給出的邊緣電容計(jì)算公式是以發(fā)表的論文(4)為基礎(chǔ)的經(jīng)驗(yàn)公式(見8.5)。它們采用皮法拉/厘米周長(zhǎng)來表示,因此它們與電極形狀無關(guān)。目前意識(shí)到它們?cè)诔叽缟鲜遣粶?zhǔn)確的,但是它們與其它被提議的公式相比,其更加接近真實(shí)的邊緣電容。接地電容不能通過目前已知的任何公式來進(jìn)行計(jì)算。當(dāng)必須對(duì)包含接地電容的電容進(jìn)行測(cè)量時(shí),建議使用特殊工裝來經(jīng)驗(yàn)測(cè)定該電容值。在兩終端裝置測(cè)量的電容和由樣本電容率和尺寸計(jì)算的電容之間的差值即為接地電容和邊緣電容的相加值。邊緣電容可采用表1的某一公式來進(jìn)行計(jì)算。只要保持導(dǎo)線和電極的物理布置,接地電容將保持為恒定的,同時(shí)經(jīng)驗(yàn)測(cè)定值可用于修正隨后的電容測(cè)量值。一個(gè)受保護(hù)電極的有效面積大于其實(shí)際面積,兩者差值大約為1/2的保護(hù)間隙面積(5,6,18)。因此,圓形電極直徑,矩形電極每個(gè)尺寸或圓柱形電極長(zhǎng)度將以該間隙寬度進(jìn)行遞增。當(dāng)間隙寬度g與樣本厚度t的比值相當(dāng)大時(shí),受保護(hù)電極有效尺寸增加值稍微小于間隙寬度。該案例計(jì)算詳情見附錄X2所述。
表2 非接觸式電極的電容率和耗散因子的計(jì)算
電容率 | 耗散因子 | 符號(hào)標(biāo)識(shí) |
空氣中的測(cè)微計(jì)電極(帶保護(hù)環(huán)):
或者,如果to調(diào)節(jié)到一個(gè)新值to',則
| △C=當(dāng)嵌入樣本(+當(dāng)電容增大時(shí))時(shí)的電容變化, C1=樣本固定時(shí)的電容, △D=當(dāng)嵌入樣本時(shí)的耗散因子zui大值, Dc=樣本固定時(shí)的耗散因子, Df=液體耗散因子, to=平行板間距,mm, t=樣本平均厚度,mm, M=to/t-1, Cf=只有液體的Kf'Cv電容, δo=真空電容率(0.0088542pF/mm), A=電極面積,mm2(如果兩個(gè)電極不等效,則該值較?。?/span> Kf'=在試驗(yàn)溫度時(shí)的液體電容率(對(duì)于23℃,50%RH的空氣,該值=1.00066), Cv=被考慮區(qū)域的真空電容(εoA/to,pF), do=內(nèi)側(cè)電極外徑, d1=樣本內(nèi)徑, d2=樣本外徑, d3=外側(cè)電極內(nèi)徑, g=保護(hù)間隙,mm d1,2或3=直徑,mm(見草圖) Cv=真空電容 B=1-2δ(見附錄X2.1.3) (注釋:ALSO排出了B之后的//*//(兩處)和附錄X2的引用腳注)。 Ce=邊緣電容 ln=自然對(duì)數(shù) Kx'=樣本電容率(表1計(jì)算得出的近似值) p=(低電壓)電極測(cè)量周長(zhǎng),mm I=(低電壓)電極測(cè)量長(zhǎng)度,mm 注:在這些公式中,C和D為電池性能值,電池具有電位以能從測(cè)量回路(當(dāng)使用平行置換時(shí))的讀數(shù)中進(jìn)行要求的計(jì)算。參考注3。 注:在兩種液體方法的公式中,下表1和2分別是指*種和第二種液體。 注:兩種液體公式的C值為等效的系列值。 A2=樣本浸入液體中時(shí)受保護(hù)電極的有效面積=(d+Bg)2π/4(保護(hù)間隙修正見附錄X2)。 | |
平面電極—液體置換:
| ||
當(dāng)樣本的耗散因子小于大約0.1時(shí),可使用以下公式: | ||
圓柱形電極(帶保護(hù)環(huán))——液體置換 | ||
兩種液體方法——平面電極(帶保護(hù)環(huán))
|
備注:
GUARD ELECTRODE:保護(hù)電極;
GUARDED ELECTRODE:受保護(hù)電極;
GUARD GAP:保護(hù)間隙;
UNGUARDED ELECTRODE:無保護(hù)電極。
圖7 受保護(hù)平行板電極之間的通量線
備注:
Guard Electrode:保護(hù)電極;
Unguarded Electrode:無保護(hù)電極。
圖8 固體用三終端電池
介電常數(shù)介質(zhì)損耗測(cè)試儀7.電極系統(tǒng)7
7.1 接觸式電極——某一樣本與其自帶電極(電極材料為以下所列材料之一)一起供應(yīng)是可以接受的,對(duì)于兩終端測(cè)量,電極應(yīng)延伸到樣本邊緣或小于樣本。在后一種場(chǎng)合,兩種電極在規(guī)格上等效或不等效是可以接受的。如果電極尺寸等效,但是小于樣本,樣本邊緣必須越過電極延伸至少2倍的樣本厚度。這三個(gè)電極規(guī)格的選擇將取決于電極應(yīng)用的方便性,同時(shí)取決于所采用的測(cè)量類型。在電極延伸到樣本邊緣的場(chǎng)合,邊緣修正值(見表1)是zui小的,而對(duì)于不等效電極,邊緣修正值是zui大的。當(dāng)電極延伸到樣本邊緣,這些邊緣必須是銳利的。如果根本是使用附著的電極,當(dāng)采用一個(gè)測(cè)微計(jì)電極系統(tǒng)時(shí),必須使用這類電極。當(dāng)?shù)刃б?guī)格電極小于所用樣本時(shí),難于將它們置于中心,除非樣本是半透明的或者采用了一種對(duì)準(zhǔn)工裝。對(duì)于三終端測(cè)量,保護(hù)電極寬度應(yīng)至少為兩倍的樣本厚度(6,7)。間隙寬度應(yīng)盡可能?。梢詾?.5mm)。對(duì)于在較高頻率下的耗散因子測(cè)量,該類型電極可能不滿足要求,因?yàn)槠浯?lián)電阻。使用測(cè)微計(jì)電極來進(jìn)行測(cè)量。
7.2 電極材料:
7.2.1 金屬箔片——厚度為0.0075~0.025mm且涂覆zui小量精制凡士林,硅脂,硅油或其它合適低損耗粘合劑的鉛或錫箔片通常用于作為電極材料。鋁箔片也已經(jīng)被使用,但是不建議使用,因?yàn)槠渚哂袆傂砸约坝捎谘趸谋砻鎸?dǎo)致高接觸電阻的可能性。鉛箔片也可能因?yàn)槠鋭傂远a(chǎn)生問題。在足夠平滑壓力下應(yīng)用這些電極,以排除所有的皺紋,同時(shí)過量的粘合劑可以在箔片邊緣上工作。一個(gè)非常有效的方法是使用一個(gè)窄輥,同時(shí)沿著表面向外滾壓,直到在箔片上沒有可見的標(biāo)記。通過小心處理,粘合劑膜可以減小至0.0025mm。該膜層與樣本串聯(lián)相連,這將總是導(dǎo)致測(cè)量的電容率太低,同時(shí)耗散因子有可能太高。對(duì)于厚度小于0.125mm的樣本,這些誤差通常變得非常大。對(duì)于這類薄樣本,只有當(dāng)膜層耗散因子幾乎與樣本耗散因子相同時(shí),該耗散因子誤差才是可以忽略的。當(dāng)電極將延伸到邊緣,則制造的電極應(yīng)大于樣本,然后切成帶小型細(xì)磨刀片的邊緣。受保護(hù)電極和保護(hù)電極可采用一個(gè)電極制造而成,該電極包含整個(gè)表面,通過配有一個(gè)窄切割邊緣的圓規(guī)方式來裁剪一條窄帶(可以為0.5mm)來制備電極。
7電極系統(tǒng)補(bǔ)充信息可在研究報(bào)告RR:D09-1037中找到,該研究報(bào)告可從ASTM總部獲得。
7.2.2 導(dǎo)電涂料——某些類型的高導(dǎo)電銀涂料,不管是空氣干燥還是低溫烘烤型類型,都可以從商業(yè)渠道獲得以作為電極材料使用。它們要有足夠的氣孔來允許濕分的擴(kuò)散,從而允許試驗(yàn)樣本在電極涂覆之后進(jìn)行調(diào)節(jié)。這對(duì)于研究濕度影響特別有用。涂料具有應(yīng)用之后不準(zhǔn)備立即使用的缺點(diǎn)。它通常要求整夜空氣干燥或低溫烘烤,以去除任何溶劑痕跡,因?yàn)槿軇┖圹E可能增大電容率和耗散因子。當(dāng)刷涂涂料時(shí),通常不容易獲得明確定義的的電極區(qū)域,但是通過噴涂涂料以及采用外夾裝或壓力敏感面罩,可以克服這種局限性。銀涂料電極電導(dǎo)率通常足夠低,從而在較高頻率時(shí)產(chǎn)生問題。涂料溶劑不會(huì)*性影響樣本是非常重要的。
7.2.3 燒銀——燒銀電極只適用于玻璃和其它可以承受大約350℃的燃燒溫度而不會(huì)發(fā)生變化的陶瓷。它的高電導(dǎo)率使得電極材料適用于低損耗材料,例如熔融石英,甚至在zui高頻率下,其某一粗糙表面的能力使得其適合用于作為高電容率材料,例如鈦酸鹽。
7.2.4 噴涂金屬——采用一個(gè)噴槍涂覆的低熔點(diǎn)金屬提供了一層海綿狀膜層,該膜層可用于作為電極材料,由于其粒狀結(jié)構(gòu),因此大體上具有與導(dǎo)電涂料相同的電學(xué)電導(dǎo)率和相同的濕分孔隙率。合適的面罩必須使用以獲得尖銳的邊緣。它容易滿足某一粗糙的表面,例如布,但是在薄膜上不能滲透極其小的孔,同時(shí)不會(huì)產(chǎn)生短路。其在某些表面上的附著性是非常差的,特別是暴露在高濕度或水浸泡之后。導(dǎo)電涂料的優(yōu)點(diǎn)是沒有溶劑的影響,以及在涂覆之后可立刻準(zhǔn)備就緒使用。
7.2.5 蒸發(fā)金屬——作為一種電極材料使用的蒸發(fā)金屬可能具有不適當(dāng)?shù)碾妼?dǎo)率,尤其其極其薄,同時(shí)必須采用電鍍銅或薄板金屬作為底漆。其附著性是適當(dāng)?shù)模瑫r(shí)其自身具有足夠的濕分氣孔。在蒸發(fā)金屬時(shí),使用一種真空系統(tǒng)的必要性是不利的。
7.2.6 液態(tài)金屬——使用汞電極時(shí),在水銀池上浮動(dòng)樣本,同時(shí)使用帶尖銳邊緣的限制環(huán)來攔住受保護(hù)和保護(hù)電極中的汞,如圖9所示。當(dāng)必須測(cè)試相當(dāng)數(shù)量的樣本時(shí),一種更方便的裝置是試驗(yàn)方法D1082中圖4所示的試驗(yàn)工裝。由于汞蒸氣具有毒性,尤其是在高溫下,可能存在一些健康危險(xiǎn),因此在使用期間應(yīng)采取合適的預(yù)防措施。在測(cè)量薄膜形式的低損耗材料時(shí),例如云母片剝離,汞污染可能引入相當(dāng)大的誤差,這通常將有必要使用干凈的汞進(jìn)行每一次試驗(yàn)。伍德合金或其它低熔點(diǎn)合金可采用類似方式來使用,以在某種程度上降低健康危險(xiǎn)。
7.2.6.1 警告——長(zhǎng)期認(rèn)為汞金屬蒸汽中毒是工業(yè)中的一種危險(xiǎn)。暴露極限由政府機(jī)構(gòu)進(jìn)行設(shè)置,同時(shí)通常以美國(guó)政府工業(yè)衛(wèi)生學(xué)者會(huì)議8提出的建議為基礎(chǔ)。破碎的溫度計(jì),氣壓計(jì)和其它使用汞的儀器所溢出的汞濃度可能輕易地超過這些暴露極限。汞作為一種高表面張力和非常重的液體,其將分散成小液滴,同時(shí)滲透進(jìn)入地板中的裂紋和裂縫。這種暴露面積的增加顯著增大了在空氣中的汞蒸氣濃度。任何時(shí)候發(fā)生溢出時(shí),建議使用商用泄漏應(yīng)急工具包。汞蒸氣濃度容易采用商用嗅探器進(jìn)行監(jiān)測(cè)。在汞暴露于大氣的區(qū)域,在作業(yè)周圍定期進(jìn)行現(xiàn)場(chǎng)檢查。溢出之后進(jìn)行*地檢查。
備注:
Specimen:樣本;Mercury:汞
圖9 帶汞電極的受保護(hù)樣本
7.2.7 剛性金屬——對(duì)于光滑,比較厚或者稍微壓縮的樣本,有時(shí)可以使用高壓下的剛性電極,特別是對(duì)于常規(guī)作業(yè)。目前已發(fā)現(xiàn)直徑為10mm的電極在18.0MPa壓力下課有助于塑料材料的測(cè)量,甚至材料可以薄至0.025mm。直徑為50mm的電極在壓力下也已經(jīng)被成功用于較厚的材料。然而,當(dāng)使用實(shí)心電極時(shí),很難避免一層空氣膜,同時(shí)隨著被測(cè)材料電容率增大以及其厚度減小,該膜層的影響變得更大。在施加壓力之后,樣本尺寸將可能繼續(xù)發(fā)生變化,變化時(shí)長(zhǎng)達(dá)到24小時(shí)。
7.2.8 水——當(dāng)在低頻率(大約達(dá)到1000Hz)進(jìn)行測(cè)量時(shí),下水可作為絕緣電線和電纜測(cè)量用的一個(gè)電極。操作必須小心,以確保在樣本末端的電泄漏可以忽略不計(jì)。
7.3 非接觸式電極:
7.3.1 固定電極——在不將電極嵌入預(yù)制電極系統(tǒng)(電極系統(tǒng)在樣本的一側(cè)或兩側(cè)存在一條故意的空氣間隙)前提下,可以測(cè)量具有足夠低表面電導(dǎo)率的樣本。剛性裝配電極系統(tǒng),確保其包含一個(gè)保護(hù)電極。為獲得相同的精度,如果使用直接接觸電極,要求對(duì)電極間距和樣本厚度進(jìn)行更的測(cè)定。然而,如果電極系統(tǒng)充滿某一種液體,則可能消除這些局限性(見7.3.3)。
介電常數(shù)介質(zhì)損耗測(cè)試儀8 美國(guó)政府衛(wèi)生學(xué)者會(huì)議,Building D-7, 6500 Glenway Ave., Cincinnati, OH 45211.
7.3.2 測(cè)微計(jì)電極——圖10所示的測(cè)微計(jì)電極系統(tǒng)已開發(fā)用于(8)排除在高頻率下連接導(dǎo)線和測(cè)量電容器的串聯(lián)電感和電阻導(dǎo)致的誤差。內(nèi)置的微調(diào)電容器也提供用于電納變化方法。同時(shí)不管試驗(yàn)樣本是否在電路之內(nèi)還是之外,都能保持這些電感和電阻都是相對(duì)恒定的。那些尺寸與電極相同或者小于電極尺寸的樣本夾緊在電極之間。除非樣本表面重疊或磨得非常平,在放入電極系統(tǒng)之前,金屬箔片或其等效物必須應(yīng)用到樣本上。如果應(yīng)用電極,它們也必須是光滑和平直的。在移除樣本之后,通過移動(dòng)測(cè)微計(jì)電極讓其更近的靠在一起,電極系統(tǒng)可制成具有相同電容。當(dāng)測(cè)微計(jì)電極系統(tǒng) 小心校準(zhǔn)電容變化時(shí),其應(yīng)用排除了邊緣電容,接地電容和連接電容的修正值。在這一方面,在整個(gè)頻率范圍上使用電極系統(tǒng)是有好處的。一個(gè)缺點(diǎn)是電容校準(zhǔn)沒有傳統(tǒng)多層可變電容器的電容校準(zhǔn)那么,同時(shí)還不能直接讀數(shù)。在頻率小于1MHz時(shí),當(dāng)導(dǎo)線的串聯(lián)電感和電阻的影響可以忽略不計(jì)時(shí),測(cè)微計(jì)電極的電容校準(zhǔn)可以采用一個(gè)標(biāo)準(zhǔn)電容器的電容校準(zhǔn)來替代,該標(biāo)準(zhǔn)電容器可與測(cè)微計(jì)電極系統(tǒng)并聯(lián)或者位于電橋的電容臂附近。樣本之內(nèi)和之外的電容變化可以該電容器形式來進(jìn)行測(cè)量。某一測(cè)微計(jì)電極系統(tǒng)的小誤差來源是電極系統(tǒng)校準(zhǔn)時(shí)包含的電極邊緣電容,當(dāng)存在與電極直徑相同的電介質(zhì)時(shí),該邊緣電容將發(fā)生稍微變化。在實(shí)際中,可讓樣本直徑比電極直徑小2倍的樣本厚度(3),則可以排除該誤差。當(dāng)沒有電極附著在樣本上時(shí),表面電導(dǎo)率可能導(dǎo)致低損耗材料耗散因子測(cè)量產(chǎn)生嚴(yán)重的誤差。當(dāng)測(cè)量用電橋具有一個(gè)保護(hù)電路時(shí),則使用受保護(hù)測(cè)微計(jì)電極將是有利的。邊緣現(xiàn)象等的影響幾乎可以*排除。當(dāng)電極和固定架都制備得非常好時(shí),則沒有必要進(jìn)行電容校準(zhǔn),因?yàn)殡娙菘捎呻姌O間距和直徑計(jì)算得出。然而測(cè)微計(jì)將要求進(jìn)行校準(zhǔn)。當(dāng)使用受保護(hù)測(cè)微計(jì)電極時(shí),在樣本上使用電極將是不可行的,除非樣本直徑小于受保護(hù)電極。
備注:
Micrometer Screw:測(cè)微計(jì)螺釘;Bellows:風(fēng)箱;Grounded Electrode:接地電極;
Specimen:樣本;Vernier Capacitor:微型電容器;High Electrode:高電極;
Grounded Terminals:接地終端
圖10 測(cè)微計(jì)-電極系統(tǒng)
7.3.3 液體置換方法——當(dāng)浸泡介質(zhì)為一種液體,同時(shí)沒有使用保護(hù)時(shí),應(yīng)平行板系統(tǒng)結(jié)構(gòu),以使得絕緣高電位板可以在兩個(gè)平行低電位或接地板之間平行和等距離進(jìn)行固定,其中接地板用試驗(yàn)池的相對(duì)內(nèi)壁設(shè)計(jì)成容納液體。該結(jié)構(gòu)使得電極系統(tǒng)基本為自我屏蔽,但是通常要求雙份試驗(yàn)樣本。液體的溫度測(cè)量必須作出規(guī)定(9,10)。試驗(yàn)池應(yīng)為鍍黃銅和金結(jié)構(gòu)。高電位電極應(yīng)可以移動(dòng)來進(jìn)行清洗。面必須接近為光學(xué)平面,同時(shí)盡可能平行。在≤1MHz頻率下測(cè)量用合適液體池見試驗(yàn)方法D1531的圖4所示。該試驗(yàn)池的尺寸變化是有必要的,以提供用于不同厚度或尺寸的薄板樣本測(cè)試,但是這種變化應(yīng)不能讓充滿標(biāo)準(zhǔn)液體的試驗(yàn)池電容降低到小于100pF.。在1~約50MHz頻率下進(jìn)行測(cè)量時(shí),試驗(yàn)池尺寸必須大大地減小,同時(shí)導(dǎo)線必須盡可能短且直。當(dāng)在50MHz頻率下進(jìn)行測(cè)量時(shí),帶液體的試驗(yàn)池電容應(yīng)不超過30或40pF。受保護(hù)平行板電極優(yōu)點(diǎn)是單個(gè)樣本可以進(jìn)行*準(zhǔn)確地測(cè)量。另外液體電容率的先前知識(shí)不作要求,因此其可以直接測(cè)量得出(11)。如果試驗(yàn)池結(jié)構(gòu)帶一個(gè)測(cè)微計(jì)電極,厚度差異很大的樣本可以進(jìn)行*準(zhǔn)確地測(cè)量,因?yàn)殡姌O可以調(diào)節(jié)至某一只比樣本厚度稍微大一點(diǎn)的間距。如果液體電容率接近樣本電容率,樣本厚度測(cè)定誤差影響可以降至zui小。在測(cè)量極其薄的膜層時(shí),使用一種接近匹配液體和一種微米試驗(yàn)池,則將允許獲得很高的準(zhǔn)確度。
7.3.3.1 如果在兩種已知電容率的液體上進(jìn)行足夠的測(cè)量,則排除了樣本厚度和電極間距測(cè)定的必要性(12,13,18)。本方法對(duì)任何頻率范圍都不作限制;然而,限制液體浸泡方法用于液體耗散因子小于0.01(對(duì)于低損耗樣本,小于0.0001)的頻率場(chǎng)合。
7.3.3.2 當(dāng)使用兩種液體方法時(shí),在樣本相同樣本進(jìn)行測(cè)量是非常重要的,因?yàn)楹穸葘⒉豢偸窃谒悬c(diǎn)都是相同的。為確保相同區(qū)域被測(cè)試兩次,同時(shí)幫助薄膜的搬運(yùn),樣本固定架是非常方便的。固定架可為一個(gè)V形件,其將能滑入電極池中的溝槽中。同時(shí)也有必要控制溫度zui小為0.1℃。這可以通過配備帶冷卻線圈的試驗(yàn)池來達(dá)到效果(13)。
8.裝置選擇和電容和交流損耗測(cè)量方法
8.1 頻率范圍——電容和交流損耗測(cè)量方法可分成三種:零值法,共振法和偏轉(zhuǎn)法。任何特殊場(chǎng)合的某一方法選擇將主要取決于工作頻率。當(dāng)頻率范圍為從小于1Hz直到幾兆赫茲時(shí),可以使用許多形式的電阻或電感比值臂電容橋。當(dāng)頻率低于1Hz時(shí),要求采用特殊的方法和儀器。在500kHz~30MHz的較高頻率下,可使用平行T形網(wǎng)絡(luò),因?yàn)樗鼈儾捎昧斯舱耠娐返囊恍┨卣?。而?dāng)頻率從500kHz到幾百兆赫茲時(shí),可使用共振法。偏轉(zhuǎn)法只能在從25到60Hz的電源線頻率下使用,使用時(shí)采用商用指示儀表,此時(shí)可以很容易獲得要求的較高電壓。
8.2 直接和替代方法——在任何直接法中,電容和交流損耗值采用該方法所用所有電路元件形式來表示,因此受到所有誤差的影響。通過替代方法可以獲得更加大的精度,在此方法中可采用連接和斷開的未知電容器進(jìn)行讀數(shù)。在這些不能改變的電路元件中的誤差通??梢耘懦蝗欢匀槐A袅诉B接誤差(注4)。
8.3 兩終端和三終端測(cè)量——兩終端和三終端測(cè)量選擇通常是在精度和便利性之間作出一個(gè)選擇。在電介質(zhì)樣本上使用一個(gè)保護(hù)電極時(shí),則幾乎可排除邊緣和接地電容的影響,如6.2的解釋。規(guī)定采用一個(gè)保護(hù)終端,則可排除電路元件引入的一些誤差。在另一方面,補(bǔ)充的電流元件和護(hù)罩通常要求提供相當(dāng)多的保護(hù)終端到測(cè)量設(shè)備上,這可能增加好幾倍的調(diào)節(jié)次數(shù)來獲得要求的zui后結(jié)果。電阻比值臂電容橋用保護(hù)電路很少被用于1MHz以上的頻率。電導(dǎo)比值臂橋提供了一個(gè)保護(hù)終端,而不要求額外的電路或調(diào)節(jié)。平行T形網(wǎng)絡(luò)和共振電路不提供保護(hù)電路。在偏轉(zhuǎn)方法中,可以僅僅通過額外護(hù)罩來提供一個(gè)保護(hù)。一個(gè)兩終端測(cè)微計(jì)電極系統(tǒng)的使用提供了許多三終端測(cè)量的優(yōu)點(diǎn),即幾乎排除了邊緣和接地電容的影響,但是可能增加觀測(cè)或平衡調(diào)節(jié)的次數(shù)。其使用也可以排除在較高頻率下連接導(dǎo)線的串聯(lián)電感和電阻導(dǎo)致的誤差,其可以在整個(gè)頻率范圍內(nèi)使用,直至幾百兆赫茲。當(dāng)使用一個(gè)保護(hù)時(shí),存在耗散因子測(cè)量值將小于真實(shí)值的可能性。這可能是由于在測(cè)量電路保護(hù)點(diǎn)和保護(hù)電極之間的任何點(diǎn)位置的保護(hù)電路的電阻導(dǎo)致的。這還可能來自高接觸電阻,導(dǎo)線電阻,或者來自保護(hù)電極自身的高電阻。在場(chǎng)合,耗散因子將顯示為負(fù)值。當(dāng)沒有保護(hù)的耗散因子高于由于表面泄漏導(dǎo)致的標(biāo)準(zhǔn)值時(shí),該情況zui可能存在。電容耦合到測(cè)量電極以及電阻耦合連接到保護(hù)點(diǎn)的任何點(diǎn)可成為困難的來源。常見保護(hù)電阻產(chǎn)生一個(gè)與ChClRg成比例的等效負(fù)值耗散因子,其中Ch和Cl為電極保護(hù)電容,Rg為保護(hù)電阻(14)。
8.4 液體置換方法——液體置換方法使用時(shí)可以采用三終端或自屏蔽兩終端試驗(yàn)池。采用三終端試驗(yàn)池,可能直接測(cè)定所用液體的電容率。自屏蔽兩終端試驗(yàn)池提供了三終端試驗(yàn)池的許多優(yōu)點(diǎn),即幾乎排除了邊緣和接地電容的影響,同時(shí)還可以與沒有規(guī)定一個(gè)保護(hù)的測(cè)量電路一起使用。如果其配有一個(gè)完整的測(cè)微計(jì)電極,在較高頻率下連接導(dǎo)線的串聯(lián)電導(dǎo)電容的影響將可以排除。
8.5 精度——8.1所列方法精密考慮了電容率測(cè)定精度為±1%,而耗散因子測(cè)定精度為±(5%+0.0005)。這些精度取決于至少三個(gè)因素:電容和耗散因子觀測(cè)的精度,所用電極布置導(dǎo)致的這些參量的修正值的精度以及電極之間真空靜電容計(jì)算的精度。在的條件以及較低頻率下,電容測(cè)量可具有±(0.1%+0.02pF)的精度,而耗散因子可具有±(2%+0.00005)的精度。在較高頻率下,當(dāng)電容達(dá)到±(0.5%+0.1pF),耗散因子達(dá)到±(2%+0.0002)時(shí),這些極限值可能增大。配有一個(gè)保護(hù)電極的電介質(zhì)樣本測(cè)量只具有電容誤差和電極之間真空靜電容計(jì)算的誤差。受保護(hù)電極和保護(hù)電極之間間隙太寬導(dǎo)致的誤差將通常為幾十個(gè)百分比,同時(shí)修正值可以計(jì)算為幾個(gè)百分比。當(dāng)平均厚度為2mm時(shí),樣本厚度測(cè)量誤差可為幾十個(gè)百分比,此時(shí)假設(shè)可以測(cè)量至±0.005mm。圓形樣本直徑可以測(cè)量至具有±0.1%的精度,但是輸入作為平方值。將這些誤差合并,電極之間真空靜電容可以測(cè)量至具有±0.5%的精度。與電極之間靜電容不同的是,采用測(cè)微計(jì)電極進(jìn)行測(cè)量的帶接觸式電極的樣本不需要進(jìn)行修正,假如樣本直徑足夠小于測(cè)微計(jì)電極直徑的話。當(dāng)兩終端樣本以任何其它方式進(jìn)行測(cè)量時(shí),邊緣電容計(jì)算和接地電容測(cè)定將涉及相當(dāng)大的誤差,因?yàn)槊恳环N誤差都可能為2~40%的樣本電容。采用目前的這些電容知識(shí),在計(jì)算邊緣電容時(shí),可能的誤差為10%,而在評(píng)估接地電容時(shí),其可能的誤差為25%。因此涉及的總誤差范圍可為幾十分之一的1%到10%或者更大。然而,當(dāng)沒有電極接地時(shí),接地電容誤差降至zui?。?.1)。采用測(cè)微計(jì)電極,0.03階的耗散因子可以測(cè)量到±0.0003的真實(shí)值,而0.0002階的耗散因子可以測(cè)量到±0.00005的真實(shí)值。耗散因子范圍通常為0.0001到0.1,但是其也可以超過0.1。在10~20MHz的頻率下,可以推測(cè)0.0002階的耗散因子。從2到5的電容率值可以測(cè)定到±2%。該精度受到電極之間真空靜電容計(jì)算要求測(cè)量精度以及測(cè)微計(jì)電極系統(tǒng)誤差的限制。
介電常數(shù)介質(zhì)損耗測(cè)試儀9.抽樣
9.1 抽樣說明見材料規(guī)范。
介電常數(shù)介質(zhì)損耗測(cè)試儀10.程序
10.1 樣本制備
10.1.1 概述——裁剪或模壓試驗(yàn)樣本至一個(gè)合適的形狀和厚度,以能按照材料規(guī)范進(jìn)行測(cè)試或者按照要求的測(cè)量精度,試驗(yàn)方法,和將執(zhí)行的測(cè)量頻率來進(jìn)行測(cè)試。按照被測(cè)材料要求的標(biāo)準(zhǔn)方法來測(cè)量厚度。如果某一特殊材料沒有標(biāo)準(zhǔn),然后按照試驗(yàn)方法D374測(cè)量厚度。實(shí)際測(cè)量點(diǎn)應(yīng)在材料電極覆蓋區(qū)域上均勻分布。然后合適的測(cè)量電極應(yīng)用到樣本上(第7章)(除非將使用液體置換方法),尺寸和數(shù)量選擇主要取決于是否將執(zhí)行三終端或兩終端測(cè)量,如果執(zhí)行后者的兩終端測(cè)量,是否將使用一個(gè)測(cè)微計(jì)電極系統(tǒng)(7.3)。樣本電極材料選擇將取決于應(yīng)用的便利性和是否樣本必須在高溫和高相對(duì)濕度下進(jìn)行調(diào)節(jié)(第7章)。通過一個(gè)移動(dòng)顯微鏡來獲得電極尺寸(如果電極不等效,則是指較小的電極),或者通過刻度為0.25mm的鋼尺和一個(gè)允許放大至讀數(shù)到0.05mm的放大鏡來進(jìn)行測(cè)量。在幾個(gè)點(diǎn)上測(cè)量圓形電極的直徑,或者矩形電極的尺寸,以獲得一個(gè)平均值。
10.1.2 測(cè)微計(jì)電極——樣本面積等于或小于電極面積是可以接受的,但是樣本的任何部分應(yīng)不能延伸越過電極邊緣。樣本邊緣應(yīng)是光滑的,且垂直于薄板平面,同時(shí)也應(yīng)具有清晰的邊界,以使得薄板平面尺寸能夠測(cè)量到0.025mm。厚度≤0.025直到≥6mm的厚度值都是可以接受的,這取決于平行板電極系統(tǒng)的zui大可用板間距。樣本應(yīng)是扁平的,同時(shí)厚度盡可能均勻,且無空隙,外來物質(zhì)夾雜物,皺紋或任何其它缺陷。已經(jīng)發(fā)現(xiàn)采用一個(gè)幾個(gè)厚度或很多厚度的組合,能更方便和準(zhǔn)確得測(cè)試極其薄樣本。每個(gè)樣本的平均厚度應(yīng)盡可能測(cè)量到±0.0025mm之內(nèi)。在一些場(chǎng)合,特別是對(duì)于薄膜等材料,但通常不包括多孔材料,將通過由已知或測(cè)量的材料密度,樣本面的面積以及在分析天平上通過測(cè)量獲得的樣本(或者組合樣本,當(dāng)在多個(gè)厚度薄板上進(jìn)行測(cè)試時(shí))質(zhì)量來計(jì)算得出平均厚度。
10.1.3 液體置換——當(dāng)浸泡介質(zhì)為一種液體時(shí),如果標(biāo)準(zhǔn)液體電容率在樣本電容率的大約1%之內(nèi)(見試驗(yàn)方法D1531),樣本大于電極是可以接受的。另外,對(duì)于7.3.3所示類型的試驗(yàn)池,將通常要求雙份樣本,盡管可以在這類試驗(yàn)池中每次測(cè)試單個(gè)樣本。在任何場(chǎng)合,樣本厚度應(yīng)不小于大約80%的電極間距,當(dāng)被測(cè)材料耗散因子小于大約0.001時(shí),這變得特別重要。
10.1.4 清洗——因?yàn)橐呀?jīng)發(fā)現(xiàn)在某些材料場(chǎng)合,當(dāng)不帶電極進(jìn)行測(cè)試時(shí),樣本表面上存在的導(dǎo)電污染物可對(duì)結(jié)果產(chǎn)生無規(guī)律的影響,因此需要采用一種合適的溶劑或其它方式(按照材料規(guī)范所述)來清洗試驗(yàn)樣本,同時(shí)允許在試驗(yàn)之前*干燥樣本(15)。當(dāng)將在空氣中在低頻率(60~10000Hz)下進(jìn)行測(cè)試時(shí),清洗變得特別重要,但是如在無線電頻率下進(jìn)行測(cè)量時(shí),清洗變得不那么重要。在采用一種液體介質(zhì)進(jìn)行試驗(yàn)的場(chǎng)合,樣本清洗也將降低污染浸泡介質(zhì)的趨勢(shì)。被測(cè)材料適用的清洗方法參閱ASTM標(biāo)準(zhǔn)或其它規(guī)定本試驗(yàn)的文件。在清洗之后,只用鑷子轉(zhuǎn)移樣本,然后儲(chǔ)存在單獨(dú)的信封套中,以防止在試驗(yàn)之前被進(jìn)一步污染。
10.2 測(cè)量——將帶附著電極的試驗(yàn)樣本放入一個(gè)合適的測(cè)量試驗(yàn)池中,然后采用具有要求靈敏度和精度的方法來測(cè)量樣本的電容和直流損耗。對(duì)于日常工作,當(dāng)zui高精度不作要求時(shí),或當(dāng)樣本終端都不用接地時(shí),則沒有必要將固體樣本放入一個(gè)試驗(yàn)池中。
102.1 警告——本試驗(yàn)執(zhí)行期間,致命電壓是一種潛在的危險(xiǎn)。所有試驗(yàn)裝置及電連接到其上的所有相關(guān)設(shè)備需進(jìn)行適當(dāng)?shù)脑O(shè)計(jì)和安裝以便能安全運(yùn)行,這是非常重要的。試驗(yàn)期間個(gè)人可能接觸的所有導(dǎo)電連接進(jìn)行牢固接地。在執(zhí)行任何試驗(yàn)時(shí),提供方式來對(duì)試驗(yàn)期間處于高電壓的所有零件進(jìn)行接地,或者對(duì)試驗(yàn)期間獲得一個(gè)感應(yīng)電荷而具有電位的所有零件進(jìn)行接地,或者對(duì)甚至在電壓源斷開之后還保持帶電荷而具有電位的所有零件進(jìn)行接地。認(rèn)真指導(dǎo)所有操作者,以使得其能采用正確的程序來安全執(zhí)行試驗(yàn)。當(dāng)執(zhí)行高電壓試驗(yàn)時(shí),特別是在壓縮氣體或在油中測(cè)試時(shí),在擊穿時(shí)釋放的能量可能足夠?qū)е略囼?yàn)箱發(fā)生火災(zāi),爆炸,或者破裂。設(shè)計(jì)試驗(yàn)設(shè)備,試驗(yàn)箱和試驗(yàn)樣本,以使得這類情況的發(fā)生可能性降至zui小,同時(shí)排除人身傷害的可能性。如果存在火災(zāi)風(fēng)險(xiǎn),則需配置滅火設(shè)備。
注2:將樣本連接到測(cè)量電路所用的方法是非常重要的,特別是對(duì)于兩終端測(cè)量。對(duì)于平行替代測(cè)量,試驗(yàn)方法D150先前推薦的臨界間距連接方法可導(dǎo)致0.5pF的負(fù)誤差。當(dāng)兩終端樣本作為一個(gè)保護(hù)在一個(gè)試驗(yàn)池中進(jìn)行測(cè)量時(shí),可產(chǎn)生一個(gè)類似的誤差。因?yàn)槟壳耙阎獩]有方法能用于評(píng)估該誤差,當(dāng)必須避免該數(shù)值的誤差時(shí),必須使用一種替代方法,也就是說,使用測(cè)微計(jì)電極,液體浸泡池,或者帶受保護(hù)導(dǎo)線的三終端樣本。
注3:為獲得電容和耗散因子而執(zhí)行的測(cè)量細(xì)節(jié)說明以及由于測(cè)量電路而執(zhí)行的任何必要的修正細(xì)節(jié)說明見商用設(shè)備提供的說明書所述。以下章節(jié)擬用于提供所需的補(bǔ)充說明。
10.2.2 固定電極——地調(diào)節(jié)板間距至一個(gè)適合被測(cè)樣本的值。特別對(duì)于低損耗材料,板間距和樣本厚度應(yīng)使得樣本將占據(jù)不少于大約80%的電極間隙。對(duì)于在空氣中的試驗(yàn),不建議板間距小于大約0.1mm。當(dāng)電極間距沒有調(diào)節(jié)到一個(gè)合適值時(shí),必須制備具有合適厚度的樣本。測(cè)量試驗(yàn)池的電容和耗散因子,然后嵌入樣本,同時(shí)使得樣本位于測(cè)微計(jì)電極的電極或試驗(yàn)池之間的中心位置。重復(fù)測(cè)量。為獲得zui大的精度,如果可以使用測(cè)量設(shè)備,直接測(cè)定△C和△D。記錄試驗(yàn)溫度。
10.2.3 測(cè)微計(jì)電極——測(cè)微計(jì)電極常與那些接觸樣本或其附著電極的電極一起使用。為執(zhí)行一次測(cè)量,首先將樣本夾緊在測(cè)微計(jì)電極之間,然后平衡或調(diào)整測(cè)量用網(wǎng)絡(luò)。接著取出樣本,重新設(shè)置電極,通過移動(dòng)測(cè)微計(jì)電極使得更近地靠在一起,使得電路或橋臂中的總電容重新恢復(fù)至其原始值。
10.2.4 液體置換方法——當(dāng)使用單種液體時(shí),充滿試驗(yàn)池中,然后測(cè)量電容和耗散因子。小心插入樣本(或組合樣本,如果使用了兩個(gè)樣本池),然后將其置于中心位置。重復(fù)測(cè)量。為獲得zui大的精度,如果可以使用測(cè)量設(shè)備,直接測(cè)定△C和△D。從液體中迅速地取出樣本,以防止發(fā)生膨脹,然后在繼續(xù)測(cè)試另一樣本之前重新充滿試驗(yàn)池至適當(dāng)?shù)囊何?。結(jié)果計(jì)算公式見表2給出。試驗(yàn)方法D1531詳細(xì)描述了采用了本方法測(cè)量聚乙烯的應(yīng)用。當(dāng)受保護(hù)試驗(yàn)池為耐震結(jié)構(gòu)時(shí),按照溫度控制條款,例如試驗(yàn)方法D1531中方法B的建議,則可通過在兩種液體中測(cè)量樣本來獲得更大的精度。本方法也排除了已知樣本尺寸的需要。該程序與以前的程序相同,除了使用兩種不同電容率的流體之外(12,13,18)。使用空氣作為*種流體是很方便的,因?yàn)檫@能避免測(cè)量期間清洗樣本的必要性。受保護(hù)試驗(yàn)池的使用能允許測(cè)定所用液體或流體電容率測(cè)定。當(dāng)采用一種或兩種流體方法時(shí),可能獲得zui大的精度,此時(shí)一種液體的電容率zui接近匹配樣本的電容率。
注4:當(dāng)采用兩種流體方法時(shí),可由任一組讀數(shù)獲得耗散因子(其中采用具有較高Kf'的那組數(shù)據(jù)可獲得zui的耗散因子)。
10.3電容率,耗散因子和損耗指數(shù)的計(jì)算——對(duì)于在某一給定頻率下測(cè)量的樣本,所用測(cè)量電路將給出電容值,交流損耗值(用Q表示),耗散因子,或串聯(lián)或并聯(lián)電阻。當(dāng)由觀測(cè)電容值計(jì)算得出電容率時(shí),這些值必須轉(zhuǎn)換為并聯(lián)電容,如果不是如此來表示,則使用公式5。當(dāng)使用測(cè)微計(jì)電極時(shí),表3給出的公式可用于計(jì)算樣本的電容。對(duì)于不同的電極系統(tǒng),表2給出的公式可用于計(jì)算電容率和耗散因子。當(dāng)使用平行替代方法時(shí),耗散因子讀數(shù)必須乘以總電路電容與樣本或試驗(yàn)池電容的比值。Q和串聯(lián)或并聯(lián)電阻也要求由觀測(cè)值計(jì)算得出。電容率為:
Kx'=Cp/Cv (11)
平坦平行板和共軸圓柱的真空電容表達(dá)(6.4)見表1給出。當(dāng)交流損耗采用串聯(lián)電阻或并聯(lián)電阻或電導(dǎo)來表示時(shí),使用公式3和4給出的關(guān)系式來計(jì)算耗散因子(見3.1.2.1)。損耗指數(shù)等于耗散因子和電容率的乘積(見3.4)。
10.4 修正——將樣本連接到測(cè)量電路所用的導(dǎo)線具有電導(dǎo)和電阻,在高頻率下,它們能zui大測(cè)量的電容和耗散因子。當(dāng)測(cè)量中已包括額外電容時(shí),例如邊緣電容和接地電容,這些電容在兩終端測(cè)量時(shí)可產(chǎn)生電位,此時(shí)觀測(cè)并聯(lián)電容將增大,同時(shí)觀測(cè)耗散因子將減小。這些影響的修正值在附錄X1和表1中給出。
介電常數(shù)介質(zhì)損耗測(cè)試儀11.報(bào)告
11.1 報(bào)告以下信息:
11.1.1 描述被測(cè)試的材料,也就是指名稱,等級(jí),顏色,制造商和其它相關(guān)數(shù)據(jù),
11.1.2 試驗(yàn)樣本形狀和尺寸,
11.1.3 電極和測(cè)量池的類型和尺寸,
11.1.4 樣本調(diào)節(jié),和試驗(yàn)條件,
11.1.5 測(cè)量方法和測(cè)量電路,
11.1.6 施加電壓,有效電壓梯度和頻率,
11.1.7 并聯(lián)電容值,耗散因子值或功率因子值,電容率值,損耗指數(shù)值以及評(píng)估的精度值。
介電常數(shù)介質(zhì)損耗測(cè)試儀12.精度和偏差
12.1 精度——本規(guī)范提出的任一種試驗(yàn)方法的精度相關(guān)說明都不可能制定,因?yàn)榫仁艿奖粶y(cè)材料和測(cè)量所用裝置選擇的影響。對(duì)于特定材料,鼓勵(lì)這些試驗(yàn)方法用戶探尋適用于特定材料的標(biāo)準(zhǔn)精度說明(也可見第8章)。
12.2 偏差——任一種或所有這些試驗(yàn)方法未能制定偏差相關(guān)的說明。
介電常數(shù)介質(zhì)損耗測(cè)試儀13.關(guān)鍵字
13.1 直流損耗;電容;并聯(lián),串聯(lián),邊緣現(xiàn)象,雜散;電導(dǎo);接觸式電極;電介質(zhì);介電常數(shù);耗散因子;電絕緣材料;電極;液體置換;頻率;邊緣現(xiàn)象電容;受保護(hù)電極;Hz;損耗角;損耗因子;損耗正切值;非接觸式電極;電容率;相位角;缺相角;功率因子;Q;品質(zhì)因子;電抗;并聯(lián),串聯(lián);相對(duì)電容率;電阻;平行,串聯(lián);tan(Δ);厚度
表3 電容計(jì)算—測(cè)微計(jì)電極
并聯(lián)電容 | 符號(hào)定義 |
Cp=C'-Cr+Cvr | C'=在電極重置間距處的測(cè)微計(jì)電極的校準(zhǔn)電容, Cv=由表2計(jì)算得出的,在測(cè)微計(jì)電極之間被樣本占據(jù)區(qū)域的真空電容, Cr=在間距r處的測(cè)微計(jì)電極的校準(zhǔn)電容, r=樣本和附著電極的厚度。 |
樣本真實(shí)厚度和面積必須用于計(jì)算電容率。當(dāng)樣本具有與電極相同的直徑,通過使用以下程序和公式,可以避免邊緣真空電容的雙重計(jì)算,計(jì)算只具有小誤差(由于在電極邊緣的邊緣現(xiàn)象導(dǎo)致的誤差,值為0.2~0.5%)。 | |
Cp=C'-Cv+Cvt | Cv=在間距t處的測(cè)微計(jì)電極的校準(zhǔn)電容, Cvt=在樣本區(qū)域的真空電容, t=樣本厚度。 |
相關(guān)產(chǎn)品:
ZJC-50KV電壓擊穿試驗(yàn)儀
ZST-121體積表面電阻率測(cè)試儀
ZJD-C介電常數(shù)介質(zhì)損耗測(cè)試儀
JF-3氧指數(shù)測(cè)試儀
CZF-5水平垂直燃燒試驗(yàn)儀
歡迎您關(guān)注我們的微信公眾號(hào)了解更多信息
電話
微信掃一掃